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Several approaches for slender vortex motion~the local induction equation, the Klein–Majda
equation, and the Klein–Knio equation! are compared on a specific example of sideband instability
of Kelvin waves on a vortex. Numerical experiments on this model problem indicate that all these
equations yield qualitatively similar behavior, and this behavior is different from the behavior of a
nonslender vortex with variable cross-section. It is found that the boundaries between stable,
recurrent, and chaotic regimes in the parameter space of the model problem depend on the equation
used. The boundaries of these domains in the parameter space for the Klein–Majda equation and for
the Klein–Knio equation are closely related to the core size. When the core size is large enough, the
Klein–Majda equation always exhibits stable solutions for our model problem. Various conclusions
are drawn; in particular, the behavior of turbulent vortices cannot be captured by these
approximations, and probably cannot be captured by any slender vortex model with constant vortex
cross-section. Speculations about the differences between classical and superfluid hydrodynamics
are also offered. ©1997 American Institute of Physics.@S1070-6631~97!00803-9#
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I. INTRODUCTION

Fluid vorticity is often concentrated in small region
The special case where vorticity is concentrated on a sin
slender filament is important in many problems~e.g. turbu-
lence, superfluidity!. The study of the motion of slender vo
tices has received a lot of attention. The local induct
equation,1 the Klein–Majda equation,2 and the Klein–Knio
equation3 are three different approximations for the motio
of slender vortices. The comparison of these models and
study of differences between the results by these models
what we expect in turbulence theory are the main goals
this paper.

The paper is organized as follows. After a brief revie
of vortex dynamics, we present approximate equations
motion for slender vortices, namely, the self-induction eq
tion, the Klein–Majda equation and the Klein–Knio equ
tion. The third section describes a model problem wh
comes from the theory of vortex wave motion in superflu
helium. The equations are applied to the model problem,
the results are displayed. We then draw various conclus
from these results.

We consider unbounded, inviscid, incompressible flow
In the absence of external force, the motion of such fl
with unit density is described by the Euler equations:

Du

Dt
52¹ p, ~1!

¹•u50, ~2!

whereu(x,t) is the velocity,x5(x1 ,x2 ,x3) is the position,
p is the pressure,¹5(]/]x1 ,]/]x2 ,]/]x3) is the differen-
tiation vector,t is the time, andD/Dt[] t1u•¹ is the ma-
terial derivative.

The curl of the velocity field,

v5¹3u ~3!
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is the vorticity. The velocityu(x) can be determined from
the vorticityv(x) through the Biot–Savart law:

u~x!52
1

4pE ~x2x8!3v~x8!

ux2x8u3
dx8. ~4!

If the vorticity is concentrated on a single thin filamentC of
circulationG, Eq. ~4! becomes

u~x!52
G

4pEC~x2x8!3dl~x8!

ux2x8u3
. ~5!

If self-induced motion of the line filament is calculated b
evaluating the velocity from~5! on the filament itself, the
result will be logarithmically infinite if the filament is curve
and zero if it is straight. Thus, self-induced motion occu
only for curved filaments. But to obtain the correct value f
the velocity, further considerations of the finite size of t
vortex core as well as the vorticity distribution are require

In this paper we focus our attention on very thin vort
filaments. We shall use the termthin or slenderto describe
any vortex filament with a typical radius of the core that
small compared to a characteristic radius of curvature. T
vortices are very important in many respects. It has b
suggested by Chorin and Akao4 that thin vortices play an
important role in the structure of turbulent flows.

Vortex motion in three-dimensional space differs fro
vortex motion in two dimensions in several ways; the m
significant result from vortex stretching.5 Vortex stretching
causes vortex folding and the temperature is decreased.6,7 As
time t→`, a statistically steady state can be expected fo
vortex filament system.8,9 By contrast, superfluid vortices ar
nearly true lines, and with some exceptions~i.e., near the
critical temperature! they generally look smoother than cla
sical vortices and remain relatively ordered. Unlike in flu
mechanics where a classical fluid has a self-adjusting t
perature, a superfluid has a fixed temperature and the
stant temperature of superfluid vortex states should inh
vortex stretching. The cause of the differences in dynam
)/970/12/$10.00 © 1997 American Institute of Physics
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behavior between superfluid vortices and classical vort
remains a mystery. In this paper we try to give some sugg
tions.

II. EQUATIONS OF MOTION FOR THIN VORTICES

The simulation of the motion of a very slender vort
filament by using the classic vortex method would be p
hibitively expensive due to the overlapping condition of t
vortex method.10 For our model problem which will be dis
cussed in Sec. V, the number of vortex elements required
the vortex method in a fairly coarse spatial discretization
over 106. Even with the help of a fast vortex method,11 a
simulation with such a large number of numerical vort
elements is still not realistic. Therefore, approximate eq
tions are developed to replace the Biot–Savart law. Th
modeling approaches are adopted in this section to ana
the motion of slender vortex filaments. The first is the lo
induction approximation~LIA !, which leads to a cubic non
linear Schro¨dinger equation. The second is due to Klein a
Majda, who derived a more accurate asymptotic equation
the motion of thin vortex filaments. The third approach, cre
ited to Klein and Knio, takes the core vorticity structure in
consideration. It should be pointed out that all of these th
equations assume that the core size is small compared
the radius of curvature. According to the stability analy
given by Widnall et al.12 and Wang,13 instability occurs
when the wavelength is comparable with the core size of
vortex filament. Hence, it is plausible to conjecture that ha
pins might not develop when the core size is very sm
even though Klein and Majda16 claimed that hairpins appea
in their model.

To start with, consider a vortex filament described
r (s), wheres is an arc length parameter measured along
filament andr (s) is the position vector. Lett, n, b denote the
unit tangent, normal, and binormal vectors, respectively~see
Fig. 1!.

One way to avoid singularity in Eq.~5! is to simply
ignore the nonlocal contribution of the filament and repla
the Biot–Savart law~5! by a velocity expression that de

FIG. 1. Definitions for the local induction approximation~LIA !.
Phys. Fluids, Vol. 9, No. 4, April 1997
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pends only on the local curvature of the vortex filament. T
leads to the local induction approximation, which reads1

]r

]t
5kb5t3

]t

]s
, ~6!

wherek is the curvature. Equation~6! has a very different
character from the Euler equations, and in particular it p
serves vortex length.14

Differentiation of both sides of~6! with respect to arc
length s gives the local induction equation in terms of th
tangent vector:

]t

]t
5t3

]2t

]s2
. ~7!

Hasimoto15 has shown elegantly that Eq.~6! can be re-
duced to a cubic nonlinear Schro¨dinger equation~NLSE!

1

i

]f

]t
5

]2f

]s2
1
1

2
fufu2 ~8!

where f is the complex function defined in terms of th
filament curvaturek and torsiont :

f5k expS i E
0

s

tdsD . ~9!

We call ~9! theHasimoto transformationandf the filament
functionwhich contains all the geometrical information fo
the filament.

While the local induction approximation does not allo
for any vortex stretching, numerical simulations indicate th
vortex stretching occurs for moderately thin vortex filame
in incompressible fluids.7 To retain vortex stretching, Klein
and Majda2 developed an asymptotic theory for slender vo
tex filaments.

The slender vortices in the Klein–Majda regime are,
leading order, straight vortex filaments that are subject
small amplitude displacements. The displacement of the v
tex filament centerlines away from the straight referen
lines may be, but is not necessarily, large in comparison w

FIG. 2. A special perturbation of the straight reference filament: (t0,n0,b0)
form a right-handed orthonormal basis,x(2)(s,t)5a(s,t)n01b(s,t)b0.
971Hong Zhou
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a typical core size of the filament but it must be small co
pared to a typical perturbation wavelength. In turn, the p
turbation wavelengths are small compared to a character
radius of curvature of the filament. Thus with lengths me
sured on the curvature scale, the slender vortices in
Klein–Majda regime are characterized bysmall amplitude–
short wavelengthdistortions of a slender columnar vortex.

Following Klein and Majda,2 we assume the centerlin
of a slender vortex filament,L«(t):s→x(s,t;«), is described
by ~Fig. 2!

x~s,t;«!5«st01«2x~2!~s,t!1o~«2!, ~10!

wherex is the position vector,s5s/« and t5t/«4 are the
scaled space and time coordinates,t0 is a constant unit vec
tor, and« is a perturbation scaling parameter which satisfi
« ! 1. The vortex core sized and the parameter« are linked
through the distinguished limit2

«25
1

ln
2«

d
1C

, ~11!

whereC is a constant.
When the potential flow at infinity is zero, the filame

motion obeys the perturbed binormal law

]x~s,t !

]t
5kb~s,t !1«2v~s,t !, ~12!

where«2v(s,t) is a small perturbation velocity. Using th
curve representation~10! and by the method of asymptoti
expansions, one finds

v5I @x~2!#3t0 . ~13!

Here the linear nonlocal operatorI @•# is defined by

I @w#~s!5E
2`

` 1

uh3u Fw~s1h!2w~s!2hw8~s1h!

1
h2

2
H~12uhu!w9~s!Gdh, ~14!

where the notation85]/]s andH is the Heaviside function
Therefore, the nonlocal contribution of the filament is r
placed byI , whose effect can be understood by consider
its Fourier symbol:

Î ~j!5E
R
e2 isjI ~s!ds

5uju2~2 lnuju1C0!, ~15!

whereC051/22g, andg is Euler’s constant.
Klein and Majda showed that Hasimoto’s transformati

~9! turns the evolution Eq.~12! with v from ~13! into the
perturbed nonlinear-nonlocal Schro¨dinger equation

1

i

]f

]t
5

]2f

]s2 1«2~ 1
2 fufu22I @f#!. ~16!

We call ~16! theKlein–Majda equation. In this equation, the
nonlocal termI @f# directly competes with the cubic nonlin
earity. Thus, the nonlocal contributions become as impor
as the nonlinear local induction effects. Furthermore, it
972 Phys. Fluids, Vol. 9, No. 4, April 1997
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shown that the nonlocal term2«2I @f# is responsible for the
local self-stretching of filament. It is also shown by Kle
and Majda2 that the nonlocal operator generates a hig
singular perturbation of the NLSE~8!. According to the nu-
merical calculations presented in Klein and Majda,16 the fila-
ment functionf develops higher and much narrower pea
as time evolves when compared with the corresponding
lutions of NLSE; and these curvature peaks may corresp
to the birth of small scale ‘‘hairpins’’ or kinks along th
actual vortex filament.

Recently Klein and Knio3 proposed a model for slende
vortex motion. Their model gives an asymptotically corre
account of the local effect and an exact account of the n
local effect. More importantly, it represents the influence
the vortex core structure on the vortex filament motion,
cluding a nontrivial axial flow. By combining a thin-tub
method17 with their asymptotic analysis, Klein and Knio als
presented several numerical methods for solving their mo
equation. Most recently, Klein, Knio, and Ting18 proposed a
model that allows an accurate description of the effects
axial flow in core, viscosity and vortex stretching on slend
vortex filament motion. Here we consider the inviscid ev
lution of slender vortex filament with no axial flow.

Detailed asymptotic analyses3 show that under certain
conditions of quasi-steadiness, the velocity of a slender v
tex filament is

u~x!5
G

4p F lnS 2d D1CGkb1Qf~x!. ~17!

HereG is the circulation of the vortex,k andb denote re-
spectively the local curvature and the unit binormal vecto
x. The quantityC is a core structure coefficient given by

C5 limr→`S 4p2

G2 E
0

r

r 8v ~0!2dr82 ln r D 2
1

2

2
8p2

G2 E
0

`

r 8w~0!2dr8, ~18!

wherev (0), w(0) are the leading order axisymmetric axial an
circumferential velocities in the vortex core,r 85r /d, and
d is the core radius. The last termQf(x) in ~17! is the finite
part of the line Biot–Savart integral, which reflects the no
local contribution to the self-induced velocity. For conv
nience, we shall call Eq.~17! theKlein–Knio equation, even
though it first appeared in Callegari and Ting.19

To solve Eq.~17! for slender vortex motion, Klein and
Knio developed a method based on the thin-tube meth
Before introducing Klein and Knio’s method, we briefly re
view the thin-tube method.

The standard thin-tube method17 is a simplified version
of general vortex element method20 for three-dimensional in-
compressible flows. In the thin-tube model, a slender vor
is represented by a single chain of overlapping vortex e
ments. Each element is a circular cylinder characterized b
circulation G equal to the flux of vorticity across its cros
section and by two Lagrangian variables which describe
endpoints of the associated line segment. The Lagran
variables are moving with the fluid and can be denoted
Hong Zhou
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x i , i51,2, . . . ,N. The vortex elements are ordered so th
the indices increase in the direction of the vorticity. The
fore, the vorticity can be discretized as

v~x,t !5(
i51

N

Gdx i~ t ! f d~x2x i
c~ t !!. ~19!

In this expression,f d is a smooth approximation to the Dira
delta function with a cutoff radiusd and is formed as

f d~x!5
1

d3
f S uxu

d D , ~20!

and

dx i~ t !5x i11~ t !2x i~ t !, ~21!

x i
c~ t !5

x i11~ t !1x i~ t !

2
, ~22!

denote respectively the length and center of thei th vortex
element. The smoothing functionf (x) is chosen so as to
enhance accuracy.20 The velocity at a pointx can be obtained
by inserting~19! into ~5! and performing the integration. Th
result is the following desingularized version of the Bio
Savart law:

u~x,t !52
1

4p(
i51

N

G
~x2x i

c~ t !!3dx i
c~ t !

ux2x i
c~ t !u3

3Kd~x2x i
c~ t !!, ~23!

where

Kd~x![KS uxu
d D ~24!

andK(r ) is the velocity smoothing kernel corresponding
the vorticity smoothing kernel:

K~r !54pE
0

r

r̄ 2f ~ r̄ !dr̄. ~25!

The calculated velocityu(x i) is used to advancex i .
In the above standard thin-tube method, the cutoff rad

is usually chosen to be the physical vortex core radius. K
and Knio found that this choice, in general, leads to
O(1) error due to the differences between the physical
numerical core structures.3 So the velocity given by the thin
tube method has to be corrected.

Let uttm denote the velocity obtained from the thin-tub
method~23!, and letC, Cttm denote respectively the physic
and numerical core structure coefficients. The modificati
of the thin-tube model derived by Klein and Knio can
summarized into the following form:

u5uttm1
G

4p SC2Cttm1 ln
d ttm

d Dkb, ~26!

whereu at the left-hand side is the true~corrected! velocity
of the filament.

If d ttm is chosen to bed, then

u5uttm1
G

4p
~C2Cttm!kb. ~27!
Phys. Fluids, Vol. 9, No. 4, April 1997
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Therefore, when we use the standard thin-tube method w
d ttm5d, we have to add an explicit correction velocity to th
numerical velocityuttm.

If d ttm is chosen so thatC2Cttm1 ln(dttm/d)50, then
u5uttm. In other words, if we use a rescaled numerical co
radius

d ttm5d exp~C2Cttm!, ~28!

the standard thin-tube method can be applied directly w
out correction. This method is attractive since it does
contain a correction term which involves numerical calcu
tions of curvature and binormal vector.

In Eq. ~26!, the choice of the numerical core radiu
d ttm is not fixed. This could be very helpful when the phys
cal core radiusd is extremely small~e.g., superfluid vorti-
ces!. In the two particular methods of correction described
~27! and~28!, the numerical core radiusd ttm is either exactly
equal to or of the same order as the physical core radiud.
Whend is very small, the overlapping condition required b
the thin-tube method makes numerical simulations virtua
impossible. In the numerical experiments presented in
paper, the ratio of the physical core radius to the period
the solution is of the order 1025. Obviously, one cannot af
ford to used ttm that small. We shall use a moderately sm
d ttm in the thin-tube method and then do correction accord
to ~26!.

III. NUMERICAL SOLUTIONS OF THE APPROXIMATE
EQUATIONS

The method we use to solve the local induction appro
mation is due to Buttke.14 Instead of solving for the position
vector r , Buttke’s method solves for the tangent vectort as
in Eq. ~7!.

Let t j
n denote the approximation tot( jDs,nDt). Buttke

developed a Crank–Nicholson type scheme:

t j
n112t j

n5
Dt

4~Ds!2
~ t j
n111t j

n!

3~ t j11
n111t j21

n111t j11
n 1t j21

n !, ~29!

whereDs is the spatial increment andDt is the temporal
increment.

In Eq. ~29!, $t j
n11% can be solved by two iterative meth

ods. Both methods produce a sequence of unit vectorsxj
k

which converges tot j
n, provided Dt is appropriately re-

stricted.
Let xj

05t j
n. In the first iterative method, given unit vecto

xj
n, we definexj

k11 by the equation

yj
k112t j

n5
Dt

4~Ds!2
~xj

k1t j
n!3~xj11

k 1xj21
k 1t j11

n 1t j21
n !

~30!

and

xj
k11[

yj
k11

uyj
k11u

. ~31!

It can be shown21 that xj
n→t j

n11 if Dt,(Ds)2/4.
In the second iterative method, we define the seque

of unit vectorsxj
k by
973Hong Zhou
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xj
k112t j

n5
Dt

4~Ds!2
~xj

k111t j
n!

3~xj11
k 1xj21

k 1t j11
n 1t j21

n !. ~32!

The sequencexj
k obtained in this manner21 converges to

t j
n11 if Dt,(Ds)2.

For the Klein and Majda equation~16!, we use a frac-
tional step method developed by Klein and Majda.16 The
method is designed for general periodic initial data. It co
sists of two steps. In the first fractional step, we solve
Fourier transform of the linear problem

1

i

]f

]t
5

]2f

]s2 2«2I @f# ~33!

exactly for the discrete Fourier modes$f̂ l% of data$f l% on
an equi-distance grid. The Fourier modes$f̂ l% are obtained
by applying the discrete fast Fourier transform~DFFT! to

$f l%. The exact solution forf̂ l is given by

f̂ l~t1Dt!5f̂ l~t!exp~2 i @ l 21«2Î ~ l !#Dt!. ~34!

After $f̂ l% has been advanced fromt to t1Dt, an inverse
Fourier transform ~IFFT! is employed to calculate

$f l(t1Dt)% from $f̂ l(t1Dt)%.
In the second fractional step, we solve the nonlin

ODE

1

i

]f

]t
5«2

1

2
fufu2 ~35!

exactly at each discrete spatial location by

f l~t1Dt!5f l~t!exp~ i«2 1
2 uf j~t!u2Dt!. ~36!

The two steps are alternated in time through a Stra
type splitting. The method is second order accurate and
conditionally stable. An adaptive time stepDt is chosen by

Dt5s
2p

w*
1

N
. ~37!

In Eq. ~37!, s is a safety factor~says50.5!, N is the number
of grid points andw* is the weighted average frequency

w*5 maxS 2E ŵ~j!uf̂u2~j!dj/ifiL2
2 ,

E w~ ufu!uf̂u2ds/ifiL2
2 D , ~38!

whereŵ , w are the frequencies in the fractional step so
tion formulas~34! and ~36!.

Once the filament functionf is known, one can deter
mine the filament position using the Serret–Fre
equations.23

To solve the Klein–Knio equation~17!, we use a thin-
tube method with a moderately small numerical core rad
d ttm and then make correction according to~26!. The correc-
tion term in ~26! is roughly

G

4p
ln

d ttm

d
kb. ~39!
974 Phys. Fluids, Vol. 9, No. 4, April 1997
-
e

r

-
n-

-

t

s

For the LIA equationu5kb, the time stepDt is restricted by
Dt,O((Ds)2).14 Thus for the velocity given by (39), in
order to maintain the numerical stability, the time stepDt
has to be restricted by

Dt,
1

G

4p
ln

d ttm

d

O~~Ds!2!. ~40!

Whend is extremely small, the coefficient in front ofkb in
~39! is large. That means, for the velocity given by~39!, the
time stepDt has to be a tiny fraction of (Ds)2. In the nu-
merical experiment using the thin-tube method without c
rection term, we found that we can take fairly large time s
Dt without suffering from the numerical instability. It make
sense to use a larger time step foruttm in ~26! and use a
smaller time step for the correction term in~26!. Note that
the direct evaluation ofuttm in ~26! costsO(N2) operations,
while it takes onlyO(N) operations to compute the corre
tion term. Thus we use a hybrid of a fractional step meth
and a high order Runge–Kutta method to solve~26!. In the
first fractional step, we solve

dx

dt
5uttm ~41!

by an embedded Runge–Kutta method22 for one step with
step sizeDt. In the second fractional step, we solve

dx

dt
5

G

4p
~kb!FC2Cttm1 ln

d ttm

d G ~42!

by the same embedded Runge–Kutta method for many t
steps until the sum of the time steps is equal toDt. As
before, the two steps are alternated in time through a Stra
type splitting.

IV. A MODEL PROBLEM

To examine the equations for slender vortex motion,
apply them to a well-understood model problem. Our pro
lem comes from the theory of superfluid vortices,24 chosen
because of the wealth of analytical results available.

Superfluid helium at absolute zero temperature is inv
cid and irrotational. The circulation around a vortex core
quantized and the core radius of superfluid vortices is v
small ~O~1 Å!!. Vortex waves are a very important phenom
enon in the understanding of quantized vortex lines. Wa
excitations of isolated vortex lines in superfluid are cons
ered to be helical disturbances which rotate about the axi
symmetry with a known frequency. When two helical wav
are excited on a vortex line between fixed boundaries,
waves of opposite polarization combine to form a pla
standing wave called a Kelvin wave.

Benjamin and Feir25 showed that finite-amplitude wave
on deep water are unstable to perturbations in the sideb
waves~i.e., modes whose number of half waves aren6k,
wherek51,2, . . . andn is the number of half waves for th
main harmonic!. The Benjamin–Feir instabilities are wide
spread and play an important role in nonlinear wave p
nomena. In particular, Yuen and Ferguson26 have shown that
the Benjamin–Feir instabilities appear in the wave solutio
Hong Zhou



FIG. 3. Sideband instability for Kelvin waves by LIA.
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to the NLSE. Since helical waves in our problem are wa
solutions to the NLSE, it is not surprising that the Benjami
Feir instabilities occur for Kelvin waves. Following the st
bility analysis of Andersen, Datta, and Gunshor,27 Samuel
and Donnelly24 found that the stability condition for helica
waves which obeys the NLSE is

a0 /l,1/~2pn!, ~43!

wherea0 is the initial amplitude of the main helical wave
l is the wavelength, andn is the number of half waves o
the vortex. The stability condition~43! can also be obtained
by a linear stability analysis following Klein and Majda.16

The amplitudes of the unstable sidebands grow expon
tially when a0 /l violates the stability condition~43!. Once
the amplitudes of the sidebands grow to be comparabl
magnitude to the amplitude of the main wave, this instabi
analysis is invalid and a new behavior occurs. More spec
cally, when the initial amplitudea0 /l is smaller than the
threshold value given by~43!, the amplitudes of the main
harmonic and the sidebands remain unchanged. In this c
we havestable phenomena. If the initiala0 /l is slightly
above the threshold given by~43!, the amplitudes of the
sidebands grow due to Benjamin–Feir instabilities. In
meantime, the amplitude of the main carrier decreases. A
Phys. Fluids, Vol. 9, No. 4, April 1997
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some time the sidebands reach their peak amplitudes an
main carrier reaches its minimum. Then the sidebands
the main carrier return to their original amplitudes. The ma
harmonic and the sidebands grow and decay alternately,
the process repeats itself although not with perfect perio
ity. This kind of phenomenon is normally referred to as t
Fermi–Pasta–Ulam recurrence,28 as opposed to Poincare´ re-
currence, which requires the return of both amplitude a
phase to their initial states. A further increase in the init
value a0 /l leads to a behavior which is neither stable n
recurrent. It is calledchaotic. Those behaviors will be illus-
trated numerically in the following section.

V. NUMERICAL SIMULATIONS

We choose the same problem as in Samuels
Donnelly.24 The initial condition is chosen as a vortex lin
between two parallel planes which are 1025 m apart from
each other. The initial position of the vortex line is a plan
wave perturbed by two neighboring sidebands of small a
plitude. In our numerical simulations, we normalize the p
rameters by taking the distance between the walls as a
Thus the dimensionless core radius of the superfluid vo
filament is510210/102551025. The boundary conditions
975Hong Zhou



FIG. 4. Sideband instability for Kelvin waves by the Klein–Majda model.
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are that the vortex line must meet the boundaries perpend
larly and can slip along the boundaries. These conditions
be implemented by the method of images. One reflects
filament once with respect to one of the boundaries and t
extends it periodically. In our numerical simulations, as
advance the vortex filament in time, we decompose the
ment curve into Fourier modes. In this way, we obtain
amplitudes of the main mode and its sidebands as funct
of time t.

In Fig. 3 we present the results given by the se
induction equation. Thex-axis is the time, whereas th
y-axis is the ratio of the amplitude to the wavelengthl.
Plotted in Fig. 3 are the amplitude of the main harmo
(n511) and the lower harmonics (n510, 9, 8 in order of
decreasing amplitude! as a function of time. The plot of the
upper harmonics (n512, 13, 14) looks very similar. When
the ratio of the initial amplitude of the main harmonica0 to
its wavelengthl is 0.02, the amplitudes of the sideban
waves do not grow@Fig. 3~a!# and we obtain stable phenom
enon. If the initiala0 /l is increased to 0.03@Fig. 3~b!# or
0.04 @Fig. 3~c!#, a recurrent behavior is observed. Whena0/
l is further increased to 0.08@Fig. 3~d!#, a chaotic behavior
occurs. These results confirm the stability condition~43!.
During the evolution of the filament, the total arclength
conserved. In the calculations which lead to Fig. 3, we u
976 Phys. Fluids, Vol. 9, No. 4, April 1997
u-
an
e
n

-
e
ns

-

c

d

N5257 nodes to represent the vortex filament between
walls; a midpoint rule was used to recover the position v
tors from the tangent vectors.

The numerical results given by the Klein–Majda mod
for a0 /l50.02, 0.03, 0.04, and 0.06 are shown in Figs. 4~a!,
~b!, ~c!, and ~d!. Similar to what we see in Fig. 3, stable
recurrent, and chaotic behaviors are also observed here.
ure 4 was obtained withN5257 and«50.309 which is re-
lated to the core size through the distinguished limit~11!.

Figures 5~a!, ~b!, ~c!, and ~d! display the results by the
Klein–Knio model corresponding to initial values o
a0 /l50.03, 0.04, 0.06, and 0.08. Again, stable, recurre
and chaotic behaviors are exhibited. The evolution of
vortex filament by the Klein–Knio equation keeps the to
arclength almost a constant. The results in Fig. 5 were
tained withN5513 andd ttm50.01.

We want to point out that even though our graphs re
resenting the ‘‘chaotic’’ cases are shown only for a few o
cillations, our calculations show that as time increases, t
become more and more chaotic and they do not exhibit
recurrency.

The above numerical experiments indicate that the s
induction equation, the Klein–Majda model, and the Klein
Knio model yield qualitatively similar results for our mode
problem. However, they do have some quantitative diff
Hong Zhou



FIG. 5. Sideband instability for Kelvin waves by the Klein–Knio model.
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ences. The boundaries between stable, recurrent, and ch
regimes in the parameter space~i.e., initial values ofa0 /l)
are different for these models. A comparison of Fig. 5~a! and
Fig. 3~b! shows that the Klein–Knio equation has a larg
stability region than that of the self-induction equation, sin
for the same initial valuea0 /l50.03, the self-induction
equation gives unstable~recurrent! behavior, whereas the
Klein–Knio model gives stable behavior. Further numeri
experiments reveal that the stability region of the Klein
Knio model is related to the core size: A larger core s
generates a larger stability region.

To compare the self-induction equation and the Klei
Majda model, we plot the stability diagram for both th
Klein–Majda model and the NLSE in Fig. 6 for«50.5 @Fig.
6~a!#, «50.4778 @Fig. 6 ~b!#, «50.309 @Fig. 6 ~c!#, and
«50.1 @Fig. 6 ~d!#. The solid lines are for the Klein–Majd
model and the dashed lines are for the NLSE. The horizo
axis is a0 /l, and the vertical axis is the growth rateG.
Instability occurs for negativeG. As shown in Fig. 6, the
stability behavior of the Klein–Majda model depends on
parameter«. More precisely, if«.0.4778, the Klein–Majda
model always gives stable behavior. When«,0.4778, the
Klein–Majda model has a smaller stable region than tha
the NLSE. As« is further decreased, the stability region
the Klein–Majda model eventually converges to that of
Phys. Fluids, Vol. 9, No. 4, April 1997
otic
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NLSE. For our model problem, the parameter« is approxi-
mately 0.309, hence the self-induction equation has a la
stability region than that of the Klein–Majda model.

All of the above simulations have assumed a qua
steady core structure for the thin vortex filament. Now w
want to examine what happens if the core structure is
quasi-steady and the initial discrete core structure may
satisfy the quasi-steadiness requirement. For this purpose
use standard vortex method to simulate the behavior of
vortex filament. The standard vortex method uses a fin
collection of vortex filaments with overlapping cores to a
proximate the vorticity field. It makes no assumption on t
physical vorticity. For the theoretical, numerical, compu
tional, and physical aspects of vortex methods, one can
for example, Beale and Majda,29,30Chorin,10 Leonard,31 and
Puckett.32 In our computation, we used 7 vortex filaments
approximate the cross-section of the physical vortex fi
ment. Each of these 7 numerical filaments initially has
same shape of Kelvin waves and is represented by 200
tex elements. The calculation is terminated if there is a fi
ment with more than 1000 elements. A fourth-order Rung
Kutta method was used to advance the filaments with t
stepDt controlled byDt•maxuui

nu<Ch, whereui
n is the ve-

locity at thei th node,C is a constant andh is the spatial step
977Hong Zhou



FIG. 6. Stability diagram for the Klein–Majda model and NLSE.
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size. Figures 7~a! and ~b! are three-dimensional perspectiv
views of the vortex at timet50.4216 and 1.9189. Here th
initial valuea0 /l is taken as 0.04. Figures 7~a! and~b! show
that violent stretching happens very quickly. Figures 7~c! and
~d! are two-dimensional views of Figs. 7~a! and ~b!, respec-
tively. It appears that the cross-section is no longer
changed. We plot the evolution of the modesn58, 9, 10 and
11 in Fig. 8 with different initial dataa0/l50.02, 0.04,
0.06, 0.08. The solid curve denotes the amplitude of m
n511, dashed curven510, dash-dotted curven59, and
dotted curven58. These results show that a vortex filame
with nonquasi-steady core structure exhibits a wild behav
which is quite different from a thin vortex filament wit
quasi-steady core structure. This may explain the differ
behavior between thick classical vortices and superfluid v
tices, since superfluid vortices are postulated to have a
stant core structure. For thin classical vortices, the assu
tion of the quasi-steady core structure is self-consistent in
asymptotic analysis.3 However, to determine numericall
whether or not a quasi-steady core structure will always
main quasi-steady requires an accurate resolution of the
structure. Currently, even with fast vortex method, we
978 Phys. Fluids, Vol. 9, No. 4, April 1997
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still unable to achieve such a high resolution in the spa
discretization to settle this issue.

In all of our numerical calculations, we have careful
checked that our choices of numerical parameters provid
adequate resolution and that further refinement does
change the conclusions. More specifically, numerical so
tions of the three models for slender vortex filament ha
converged in the sense of maximum norm. The converge
of a numerical solution by standard vortex method is a su
issue. For the standard vortex method, the traditional po
wise convergence is not expected. Here the conclusion
draw from the numerical solutions of standard vortex meth
is that a thick vortex filament~i.e., wavelength of the pertur
bation wave is not small compared to the core size! does not
maintain a quasi-steady core structure. This conclusion is
changed when the numerical mesh is refined. Also this c
clusion is supported by the calculations of Chorin.34 The
oscillations in Figs. 3, 4 and 5 are probably due to the eff
of other sidebands and the effect of the nonlinear Hasim
transformation from the filament function to filament curv
In the stability analysis, we keep only three modesn21,
n, and n11. Thus the effects of other sidebands~for ex-
Hong Zhou



FIG. 7. Perspective views of the vortex.
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ample,n22, n12, etc.! are ignored. Also in the stability
analysis, we deal with the filament function instead of t
filament curve. We have shown33 that a small sideband per
turbation to the filament function is, to the leading ord
equivalent to a small sideband perturbation to the filam
curve. Thus the small oscillation in the graphs, caused
other sidebands and the nonlinear Hasimoto transforma
does not contradict with the stability analysis.

VI. CONCLUSIONS

We have used three different equations, namely the s
induction equation, the Klein–Majda equation, and t
Klein–Knio equation, to study the sideband instability
Kelvin waves in superfluid helium. In this model problem
we assume that the thin vortex filament has constant cr
section.

Our numerical simulations reveal that all those metho
yield qualitatively similar results. For our model problem
the self-induction equation, the Klein–Majda equation, a
the Klein–Knio equation all present stable, recurrent, a
chaotic phenomena, corresponding to different ratios of
amplitude of the main wave to its wavelength. The vort
filament whose motion is described by the self-induct
equation, the Klein–Majda equation or the Klein–Kn
equation evolves smoothly and the total arc length is alm
conserved. Furthermore, hairpin structures are not form
during the vortex filament evolution. Our calculations usi
Phys. Fluids, Vol. 9, No. 4, April 1997
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the self-induction equation and the Klein–Majda equat
are in good agreement with the results of the linear stab
theory.

The stability region of the Klein–Majda equation
closely related to the core size of the vortex filament. Wh
the core size is larger than a critical value, the Klein–Ma
equation always gives a stable solution. When the core
is below the critical value, the stability region of the Klein
Majda equation is smaller than that of the self-inducti
equation. When the core size is further decreased, the st
ity region of the Klein–Majda equation coincides with th
stability region of the self-induction equation. For the mod
problem, the stability region of the Klein–Majda equation
smaller than that of the self-induction equation.

The stability region of the Klein–Knio equation also d
pends on the core size of the vortex filament. The bigger
core size, the larger is the stability region. We further fi
that for the model problem, the Klein–Knio equation has
larger stability region than that of the self-induction equ
tion. Hence, among our three equations for the model pr
lem, the Klein–Knio equation gives the largest stability r
gion, while the Klein–Majda equation has the smalle
stability region.

We also carried out the computations for a vortex w
non-quasisteady core structure. A Biot–Savart model w
employed. Only chaotic phenomena were observed for s
band perturbations. Our numerical results imply that vortic
979Hong Zhou



FIG. 8. Behaviors by the vortex method.
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with nonquasi-steady core structure behave quite differe
from thin vortices with quasi-steady core structure. T
thickness and deformation of the vortex core might play
important role in the differences between classical and su
fluid vortex dynamics, which have been highlighted
Buttke.14

In the derivations of the self-induction equation, t
Klein–Majda equation, and the Klein–Knio equation, w
have assumed a thin filament model, in which hairpins34 are
excluded; our numerical results have no hairpins, and th
fore the thin filament model is self-consistent, at least fo
class of problems that contains our model problem. Since
models are increasingly refined~i.e., the Klein–Knio model
takes more effects into account than the Klein–Majda mo
which in turn is a more accurate approximation than the s
induction equation!, it is reasonable to conjecture that motio
without hairpins is self-consistent for a class of thin vort
filaments of small-enough cross-sections.

If one views superfluid vortices as classical vortices w
very thin constant cross-section, the conclusion is consis
with the statistical theory of vortex motion7 which shows that
classical vortices, with finite and deformable cross-sect
have a temperature determined by vortex stretching, w
superfluid vortex systems have a constant temperature d
mined by boundary conditions.
980 Phys. Fluids, Vol. 9, No. 4, April 1997
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The difference between classical and quantum vorti
are often explained as a consequence of quantization; acc
ing to our results, maybe slenderness is even more impor
Of course, only very slender vortices can have a quanti
circulation.

If the self-induction equation, the Klein–Majda equ
tion, and the Klein-Knio equation are used to describe sup
fluid turbulence,14,35,36 then the physical assumption th
there is no vortex folding on small scale has been implic
made. Our numerical simulations suggest that this may b
reasonable conclusion for a single filament, but is for
moment an additional assumption for a tangle of filamen
Deeper understanding remains to be found.
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